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1 Introduction

This paper is supposed to summarize the content of my diploma thesis. It is
based on the theory by Gounaris, Kartavtsev and Paschos [1]. It descibes the
reactions

νµN → νµNπ0 (1)
νµN → µ−Nπ+ (2)

where N is a heavy nucleus that remains completely intact and does not change
quantum numbers during the process. The corresponding Feynman diagrams
are shown in figure 1.

Due to the weak isospin properties of the charged and neutral current the
charged one is twice as big as the neutral one. Further difference rise from the
non vanishing mass of the outgoing lepton and the additional CKM-matrix-
element in the charged current case. Altogether one can concentrate on the
charged current and extract the neutral one from it by setting the lepton mass
to zero and dividing by two.

2 Triply differential cross section

The invariant matrix element of charged current coherent pion production by
neutrinos is given by

M = −GF Vud√
2

jµJµ, (3)

where GF is the Fermi coupling constant and Vud the CKM-matrix element.
The leptonic current can be expressed by

jµ = u(k′)γµ(1− γ5)u(k) (4)

whereas the hadronic current has to be written more general in terms of vector
and axialvector currents:

Jµ = V+
µ −A+

µ (5)
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with

V+
µ =

〈
π+N

∣∣ V 1
µ + iV 2

µ |N
〉

A+
µ =

〈
π+N

∣∣ A1
µ + iA2

µ|N
〉
. (6)

The leptonic current can be decomposed into the basis of polarisation vec-
tors. Due to the non conservation of the leptonic current caused by the finite
lepton mass there are both spin zero and spin one degrees of freedom.

The spin zero degree of freedom corresponds to the following polarisation
vector that is collinear to the four momentum transfer qµ = kµ − k′µ:

εl
µ =

qµ√
Q2

=
1√
Q2


ν
0
0
|~q|

 . (7)

The spin one degree of freedom consists of the following three polarisations:

εµ(λ = ±1) = ∓ 1√
2


0
1
±i
0

 εµ(λ = 0) =
1√
Q2


|~q|
0
0
ν

 . (8)

They fullfill the completeness relation∑
λ=0,±1

(−1)λεµ(λ)εν∗(λ)− εµ
l εν

l = gµν . (9)

By squaring the matrix element and averaging the spins the transistion possi-
bility can be written in terms of a leptonic and a hadronic tensor:

|M|2 =
G2

F |Vud|2

2
TµνHµν . (10)

Using the normalisation of the polarization vectors the leptonic tensor can be
written in terms of density matrix elements:

|M|2 ∝ TµνHµν

=
∑
i,j

εiµεµ∗
i TµνJµJν†

=
∑
i,j

εiµLijε
∗
jνJµJν∗

=
∑
i,j

Lij(εiµJµ)(εjνJν).

(11)

The couplings of scalar and longitudinal polarisations to left and right handed
(λ = ±1) ones cancel out by averaging over the angle between the leptonic and
the pion production plane [2].

Thus the squared matrix element can be written as:

|M|2 =
G2

F |Vud|2

2

{
L00 |Jµεµ

0 |
2 + Lll |Jµεµ

l |
2 + 2Ll0 (Jµεµ

l ) (Jµεµ
0 )∗

+LLL |Jµεµ
L|

2 + LRR |Jµεµ
R|

2
}

. (12)
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The density matrix elements turn out to be:

L00 =
4[Q2(2Eν − ν)− νm2

µ]2

Q2(Q2 + ν2)
− 4(Q2 + m2

µ)

Lll =
4m2

µ[Q2(2Eν − ν)− νm2
µ]

Q2
√

Q2 + ν2

Ll0 =
4m2

µ(Q2 + m2
µ)

Q2
.

(13)

With
L̃ij =

1
2
Lij , (14)

which rises from the non normalized polarisation vectors in [1], they are the
same as given in [1].

The left and right handed matrix elements can be written as:

L̃LL + L̃RR

2
= Q2

[
1 +

(2Eν − ν)2

Q2 + ν2

]
−

m2
µ

Q2 + ν2

[
2ν(2Eν − ν) + m2

µ

]
. (15)

The next step is to calculate the couplings of the hadronic current to the polar-
isation vectors in equation (12). For that purpose the partially conserved axial
vector current (PCAC) is used. This step leads to the creation of the pion.

The decay of a pion is defined by

〈0 |Aµ
a |πb〉 = −ifπqµe−iq·xδab, (16)

where a and b indicate the conservation of the isovector. fπ is the pion decay
constant and qµ the momentum of the pion.

The conservation of the current can be tested by its divergence:〈
0

∣∣ ∂µA+
µ |π+

〉
= −fπm2

πe−ip·x

= −iqµ
〈
0

∣∣ A+
µ |π+

〉
.

(17)

Because of the non vanishing but small pion mass the axial current is only
partially conserved.

If the inital state is not vacuum but a hadronic system this leads to the
Adler-ralation [3]:

〈
β

∣∣ ∂µA+
µ |α

〉
= −iqµ

〈
β

∣∣ A+
µ |α

〉
∝ m2

π

Q2 + m2
π

T (α + π+ → β). (18)

The term T (α + π+ → β) is the invariant amplitude of the indicated process.
Using these equations together with the above definition of the pion decay

constant, one can make the following ansatz:

−iA+
µ =

fπ

√
2qµ

Q2 + m2
π

T (π+N → π+N)−Rµ. (19)

The quantity Rµ includes contributions from other isovector axial mesons like
a1(1260) that are considered to be a smooth function in Q2 because they are
quite far away from this region.
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The scalar product of the axial current and the momentum transfer is

qµRµ = −fπ

√
2T (π+N → π+N). (20)

To calculate the products of the polarisation vectors and the hadronic current
in equation (12) an approximation has to be made:

|~q|2 ≈ ν2 ⇒ ε0µ ≈
qµ√
Q2

. (21)

To keep this approximation satisfied the parameter ξ is introduced. It is defined
as

ν = ξ
√

Q2 (22)

so that the relation holds best for bigger ξ values.
Using this the first coupling is

Jµεµ
0 = (V+

µ −A+
µ )εµ

0 = −A+
µ εµ

0 = −iRµεµ
0

= −i
fπ

√
2√

Q2
T (π+N → π+N).

(23)

The other is found to be

Jµεµ
l = −i

fπ

√
2√

Q

m2
π

Q2 + m2
π

T (π+N → π+N). (24)

The couplings of the hadronic current to the left and right handed polarisa-
tion vectors leads to scattering amplitudes of pion photoproduction γN → π0N
and transverse axial production of pions A+

T N → π+N . Both of them can be
estimated and compared to the contributions of the pion nucleus elastic scatter-
ing cross section. It is found that the latter one dominates the others and that
they are negligible.

Thus, considering flux and phase space of the process, one obtains the follow-
ing triply differential cross section of charged current coherent pion production
by neutrinos scattering off nuclei:

dσCC

dQ2dνdt
=

G2
F |Vud|2

2(2π)2
ν

E2
ν

f2
π

Q2

{
L̃00 + L̃ll

(
m2

π

Q2 + m2
π

)2

+ 2L̃l0
m2

π

Q2 + m2
π

}
dσπ

dt
,

(25)
where σπ denotes the elastic pion nucleus scattering cross section. The corre-
sponding neutral current cross section is:

dσNC

dQ2dνdt
=

G2
F |Vud|2

4(2π)2
ν

E2
ν

f2
π

Q2
L̃00

dσπ

dt
. (26)

The coefficients of the hadronic cross section dσπ/dt is shown in figure 2.
The lepton mass suppresses the differential cross section for low momentum
transfers.
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3 Integrated cross section

To integrate the differential cross sections the hadronic cross section dσπ/dt
has to be defined first. For that purpose experimental data is used [4, 5]. At
various pion energies they give the cross section in dependence of the laboratory
angle which leads to the needed differential form. The data is fitted with the
exponential model

dσπ

d|t|
= a · e−b|t| (27)

which is indicated by scattering theory. The hadronic cross section is shown in
figure 3.

With that input data the triply differential cross section is completely deter-
mined. It is shown in figure 4. Due to the definition of ξ the lower integration
limit of ν is changed to

max
(
ξ
√

Q2, νmin

)
≤ ν ≤ νmax, (28)

where νmin and νmax indicate the kinematically allowed limit.
In the figure you can see that the choice of ξ = 1 is almost like νmin be-

cause the important region is already completely included. This means that the
integrated cross section will be very similar.

By integrating the differential cross section over ν you get the simple differ-
ential cross section. As you can see in figure 5 the charged current cross section
turns downwards at small Q2 values due to its smaller phase space whereas the
neutral current cross section reaches a finite value at Q2 = 0.

That so-called Adler-point can be estimated as

dσNC

dQ2

∣∣∣∣
Q2=0

=
G2

F f2
π

2π2
σπ

{
ln

Eν

mπ
+

mπ

Eν
− 1

}
Eν=1 GeV

≈ 135 · 10−40 cm2

GeV2
, (29)

where σπ is the approximate total elasic cross section at the given neutrino
energy.

The ν integrated cross section for several ξ values is shown in figure 6. It
gives emphasis to the fact that ξ = 0 is almost identical to ξ = 1. Both charged
and neutral current cross sections are the same for very small Q2 values due to
the definition in equation (28). For bigger ξ values higher Q2 values gain more
importance. The higher Q2 region is not negligible at higher neutrino energies
as you can see in figure 7. The cut-off at Q2 = 0.2 GeV2 as it is introduced in
the original paper [1] has to be expanded. It is not possible to choose the simple
kinematic maximum because it quickly raises to non physical values. At high
momentum transfers the target nucleus breaks up and the process is no longer
coherent. The only way to define a Q2 cut-off is indicated by experimental
analysis. The identification of events in a scattering experiment is performed
by kinematic characteristics of all possible reaction channels. In [6] all events
with momentum transfers bigger than 4GeV2 are interpretated as incoherent
background. Therefore this cut is also used within the Q2 integration of the
differential cross section:

Q2
min ≤ Q2 ≤ min

(
Q2

max, 4 GeV2
)
. (30)

The integrated cross sections for different Q2 cuts are shown in figures 8
and 9 for ξ = 0. This choice of the ξ parameter has been made to provide a

5



result that is comparable to experimental data. It is only a parameter within
the theory that is not part of experimental analysis. Bigger values provide a
good lower bound for the cross section whereas setting it to zero leads to some
kind of expectation value for it.

The experimental data is given by [7, 8, 9, 10, 11]. Because the neutrino
energy is widely spread, the position of the data point only indicates the mean
value and is quite uncertain. Furthermore some experiments use a different
target material than carbon as it is used within this theory. An analysis [12] of
the dependence on the nuclear mass A of the target shows an approximate A2/3

behaviour which is used to rescale the cross section values in the plot. This is
the second uncertainty because this rough A-dependence has not been studied
at higher energies so far. The theory is in good agreement with the experiments.

Especially the K2K measurement that provides a upper bound of charged
current coherent pion production can be explained due to the inclusion of the lep-
ton mass. A comparison between the correct and the zero lepton mass charged
current cross section is shown in figure 10.

The neutral current cross section can be analytically approximated for high
neutrino energies:

σNC(Eν) ≈ σNC(Eν = α) +
2G2

F f2
πa

π2b
ln

(
Eν

α

)
GeV2. (31)

The bigger the expansion point α is the better the approximation holds. a and
b are the parameters of the model given in equation (27) and are constant for
big energies. A plot of the high energy region and the approximation together
with some experimental data [13, 6, 14] is given in figure 11. They are also in
good agreement.

4 Conclusion

The neutrino induced coherent pion production within the Gounaris-Kartavtsev-
Paschos model provides a theoretical desrciption that is based on PCAC. A
strictly straight forward calculation of the Feynman diagram led to products of
polarisation vectors and the hadronic current. Here the only approximation had
to be made by assuming equation (21). Incorporating the mass of the outgoing
lepton the integrated cross section is in good agreement with experimental data
in both the neutral and the charged current case. Further investigation should
include a deeper look at the Q2-cut-off because this is the most sensitive re-
maining parameter of the theory. An analysis of the dependence on the nuclear
target would be useful, too, for a better comparison.
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Figure 1: Feynman diagrams of neutral (left) and charged (right) current co-
herent pion production.
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Figure 2: Coefficients of the hadronic cross section for Eν = 2 GeV and ν =
1 GeV.
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Figure 3: Hadronic cross section. The order of the curves is indicated in the
plot.
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Figure 4: Neutral current differential cross section at Eν = 1GeV. The lines
show ξ = 3, 2, 1 and νmin (from left to right).
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Figure 5: Simple differential cross section at Eν = 1GeV for ξ = 3 in the neutral
(dashed) and charged (straight) current case.
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Figure 6: Differential cross section at Eν = 1GeV for neutral (left) and charged
(right) current for ξ = 3, 2, 1 (bottom to top) and ξ = 0 (dashed red).
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Figure 7: Differential cross section at Eν = 1, 5 and 10 GeV (bottom to top)
with neutral (left) and charged (right) current for ξ = 0.
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Figure 8: Integrated cross section for the neutral current process with Q2
max =

0, 2 GeV2, Q2
max = 0, 5 GeV2, Q2

max = 1, 0 GeV2 und Q2
max = 4, 0 GeV2 (bot-

tom to top) for ξ = 0.
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Figure 9: Integrated cross section for the charged current process with Q2
max =

0, 2 GeV2, Q2
max = 0, 5 GeV2, Q2

max = 1, 0 GeV2 und Q2
max = 4, 0 GeV2 (bot-

tom to top) for ξ = 0.
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Figure 10: Charged current cross section with zero lepton mass (dashed) and
correct lepton mass (straight) and K2K measurement [11].
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Figure 11: High energy neutral current cross section (straight) and approxima-
tion at Eν = 70GeV (dashed).

12


